I have never dug into low level things like cpu architectures etc. and decided to give it a try when I learned about cpu.land.

I already was aware of the existence of user and kernel mode but while I was reading site it came to me that “I still can harm my system with userland programs so what does it mean to switch user mode for almost everything other than kernel and drivers?” also we still can do many things with syscalls, what is that stopping us(assuming we want to harm system of course) from damaging our system.

[edit1]: grammar mistakes

  • farcaster@beehaw.org
    link
    fedilink
    arrow-up
    7
    ·
    1 year ago

    Well hopefully you can’t harm your computer with userland programs. Windows is perhaps a bit messy at this, generally, but Unix-like systems have pretty good protections against non-superusers interfering with either the system itself, or other users on the system.

    Having drivers run in the kernel and applications run in userland also means unintentional application errors generally won’t crash your entire system. Which is pretty important…

    • jarfil@beehaw.org
      link
      fedilink
      arrow-up
      3
      ·
      1 year ago

      Windows 7 and later, have even better anti-non-superuser protections than Unix-like systems. It’s taken a while for Linux to add a capabilities permission system to limit superusers, something that’s been available on Windows all the time.

      • ricecake@beehaw.org
        link
        fedilink
        arrow-up
        2
        ·
        1 year ago

        Er, selinux was released nearly a decade before Windows 7, and was integrated into mainline just a few years later, even before vista added UAC.

        Big difference between “not available” and “often not enabled”.

        • jarfil@beehaw.org
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          Windows 95 already had an equivalent of selinux in the policy editor, “often not enabled”. UAC is the equivalent of sudo, previously “not available”.

          Windows 7 also had runtime driver and executable signature testing (“not available” on Linux), virtual filesystem views for executables (“not available” on Linux), overall system auditing (“often not enabled” on Linux), an outbound per-executable firewall (“not available” on Linux), extended ACLs for the filesystem (“often not enabled” and in part “not available” on Linux)… and so on.

          Now, Linux is great, it had a much more solid kernel model from the beginning, and being OpenSource allows having a purpose-built kernel for either security, flexibility, tinkerability, or whatever. But it’s still lacking several security features from Windows, which are useful in a generalistic system that allows end-users to run random software.

          Android had to fix those shortcomings by pushing most software into a JVM, while Flatpak is getting popular on Linux. Modern Windows does most of that transparently… at a hit to performance… and doesn’t let you opt-out, which angers tinkerers… but those are the drawbacks of security.