If you or anyone you know works on computer vision models deployed on the edge, would love to understand what type of hardware do you deploy to.

Trying to understand the various options that exist when it comes to deploying computer vision models on devices. Some boards that I am aware of are:

NVIDIA Jetson series
Qualcomm 605 SOC
Raspberry Pi
BeagleBoard
Arducam Pico4ML

But wondering what is the industry standard for applications such as manufacturing robots, drones, autonomous robots that use lidar

  • Complex-Indication@alien.topB
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    You can deploy computer vision model pretty much on anything, depending on your requirements (model size/inference time).

    I see you put some wildly different boards there (pico4ml is Cortex M0 based and is extremely low power, but really can only run tiny models all the way to Jetson series, which are GPU enabled MPU-based boards). That probably means you have no clear idea on what models you are going to be running - and that really should be a starting point.

    But since you mentioned “manufacturing robots, drones, autonomous robots”", then I can tell you that Pico4ML and likely Raspberry Pi are out of question. Jetson Nano is getting EoLd and Nvidia is moving to Orin - that one is very capable, but also very expensive and power-hungry.

    To see some other options, there is a nice list here https://docs.edgeimpulse.com/docs/development-platforms/fully-supported-development-boards (Disclaimer: I work for EI - but you don’t have to use them).

    Also, I have a YT channel on Edge ML and Robotics https://www.youtube.com/c/hardwareai