Bash-like scripting has become ubiquitous in operating systems, and it makes me wonder about its widespread adoption despite lacking certain programming conveniences found in other languages. While it may not be the ideal choice for large-scale software development, the bash shell possesses unique features that make it well-suited for interactive command-line processing, including pipelining, text manipulation, and file handling. Why isn’t there an alternative that combines the best of bash’s command-line capabilities with the robustness and scalability of traditional programming languages. Why do even new operating systems, such as Redox OS, opt for a similar syntax rather than a completely different programming language?

Here are some of the limitations I find in Bash compared to other programming languages:

  1. Syntax and Expressiveness:

    • Bash has a relatively simple syntax compared to other programming languages. It lacks some advanced language features such as object-oriented programming, complex data structures, and advanced control flow constructs.
    • The syntax of Bash can be less intuitive and more error-prone, especially for complex tasks or larger projects.
  2. Performance:

    • Bash scripts can be slower compared to compiled languages like C or Java. This is because Bash is an interpreted language, and each line of code is interpreted at runtime.
    • Bash may not be the best choice for computationally intensive tasks or applications that require high performance.
  3. Error Handling and Debugging:

    • Error handling and debugging in Bash can be challenging. Bash does not provide robust error handling mechanisms, and error messages can be cryptic and difficult to interpret.
    • Debugging Bash scripts can be cumbersome, as there is limited tooling and debugging support compared to other programming languages.
  4. Portability:

    • While Bash is available on most Unix-like systems, it may not be available on all platforms or versions. This can limit the portability of Bash scripts.
    • Bash scripts may not work as expected on non-Unix systems or require modifications to run on different platforms.
  5. Limited Standard Library:

    • Bash has a limited standard library compared to other programming languages. It lacks comprehensive libraries for tasks such as networking, database access, or advanced data manipulation.
    • Bash often relies on external tools or utilities to perform complex operations, which can introduce dependencies and compatibility issues.
  6. Lack of Modularity and Reusability:

    • Bash scripts can become monolithic and difficult to maintain as they grow in size. Bash does not provide strong mechanisms for modularization or code reuse.
    • Reusing code or creating libraries in Bash can be challenging, leading to code duplication and decreased maintainability.
  • nyan@lemmy.cafe
    link
    fedilink
    arrow-up
    7
    ·
    1 year ago

    Let’s see here. We’re talking about a thirty-plus-year-old language that was deliberately written as a superset of sh from 1979. Its main purpose is to glue together other command-line programs on 'NIXish systems to automate complex procedures for sysadmins. Using it as a general-purpose programming language, while not impossible, is kinda dumb if you have any other options. Within its original niche, it ain’t broke, so there’s no need to fix it.

    It’s a contemporary of Tcl and Perl, not of Python and Java (and sh is from the era where microcomputers mostly used BASIC dialects). Unlike Perl, it didn’t bolt on object orientation or other more modern features afterwards—and really, Perl was intended as just the kind of “shell script killer” you seem to be thinking of in your introduction. However, it never completely displaced the shell built-in scripting languages even in the days before it fell out of favour itself. Might be that there’s a reason for that.