• 3 Posts
  • 12 Comments
Joined 1 year ago
cake
Cake day: November 1st, 2023

help-circle

  • Would it be possible to create a system where every model’s training includes a specific set seed and records its exact state, and then share this information with the dataset it was trained on to ensure we can reproduce the training? This method could help manage the randomness in training.

    Using a set seed means we can make sure that the way the model starts and how it learns during training is the same every time. Essentially, if we restart the training from a certain point with this seed, the model should learn in the same way it did before. Also, by saving and sharing details like the model’s structure, which training stage it’s in, and the training step, along with the seed, we’re essentially taking a ‘snapshot’ of where the model is at that moment.

    Others could use this snapshot to pick up the training right where it was left off, under the same conditions. For merging different models, this technique could help line up how they learn, making it easier and more predictable to combine their training.

    Am I thinking right about this or am I missing something? This is just theoretical thinking and I am not an expert on the subject.