some of my results:
System:
2xXeon E5-2680v4, 28 cores total, 56 HT, 128 Gb RAM
RTX 2060 6 Gb via PCIE x16 3.0
RTX 4060 Ti 16 Gb via PCIE x8 4.0
Windows 11 Pro
OpenHermes-2.5-AshhLimaRP-Mistral-7B (llama.cpp in text generation UI):
Q4_K_M,RTX 2060 6 Gb RAM, all 35 layers offloaded, 8k context, - approx 3 t/s
Q5_K_M,RTX 4060 Ti 16 Gb RAM, all 35 layers offloaded, 32k context - approx 25 t/s
Q5_K_M,CPU-only , 8 threads,32k context - approx 2.5-3.5 t/s
Q5_K_M,CPU-only , 16 threads,32k context - approx 3-3.5 t/s
Q5_K_M,CPU-only , 32 threads,32k context - approx 3-3.6 t/s
euryale-1.3-l2-70b (llama.cpp in text generation UI)
Q4_K_M,RTX 2060+RTX 4060 Ti,35 layers offloaded, 4K context - 0.6-0.8 t/s
goliath-120 (llama.cpp in text generation UI)
Q2_K, CPU-only,32 threads - 0.4-0.5 t/s
Q2_K, CPU-only,8 threads - 0.25-0.3 t/s
Noromaid-20b-v0.1.1 (llama.cpp in text generation UI)
Q5_K_M , RTX 2060+RTX 4060 Ti, 65 layers offloaded,4K context - approx 5 t/s
Noromaid-20b-v0.1.1 (exllamav2 in text generation UI)
3bpw-h8-exl2, RTX 2060+RTX 4060 Ti, cache 8 bit, 4k context, approx 15 t/s (looks like it fits in 4060)
6bpw-h8-exl2, RTX 2060+RTX 4060 Ti, cache 8 bit, 4k context, no flash attention, gpu split 12, 6 - approx 10 t/s
Observations:
- number of cores in cpu-only modes matters very little
- “numa” does matter (I have 2 CPU sockets)
I would say - try to get additional another card?
That’s why you have ‘numa’ option in llama.cpp.
From my experience, number of memory channels do matter a lot so this mean that all memory sockets better be filled.