I loved Andrej’s talk about in his “Busy person’s intro to Large Language Models” video, so I decided to create a reading list to dive in deeper to a lot of the topics. I feel like he did a great job of describing the state of the art for anyone from an ML Researcher to any engineer who is interested in learning more.

The full talk can be found here: https://youtu.be/zjkBMFhNj_g?si=fPvPyOVmV-FCTFEx

Here’s the reading list: https://blog.oxen.ai/reading-list-for-andrej-karpathys-intro-to-large-language-models-video/

Let me know if you have any other papers you would add!

  • teryret@alien.topB
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    Right, that’s why OP prefaced with “to dive deeper into a lot of the topics”. If folks aren’t at a point where diving deeper makes sense, it’s not a list for them. There are plenty of resources for any given level of understanding, obviously no list is going to be appropriate for every member of a diverse community.

    • coumineol@alien.topB
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      Not to start an argument here but I can’t imagine anybody with any level of understanding who should start diving deeper by reading the “Attention is All You Need” paper. Yes, this is a diverse community, but when you try to address everybody’s needs, you usually end up with addressing nobody’s needs.

      • eek04@alien.topB
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        Since “Attention is All You Need” is fairly high on my reading list for understanding the details of transformer architecture, what do you recommend instead?

      • whymauri@alien.topB
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        Just me, but I think of busy coworkers with great background in math/stats and ‘classic’ ML who would ramp up quickly from a list like this. When I onboarded chemists (PhDs) to my ML team at a drug startup, I would send them a similarly dense reading list. With their strong background in physics, it would take them two weeks flat to understand the necessary theory and jargon to be productive (in our niche field).

        • coumineol@alien.topB
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          Didn’t mean to say those papers are completely useless, but even for those with a strong Math/ML background I would advise starting with recent survey papers. Reading “Attention is All You Need” is kind of like reading the General Relativity papers of Einstein - cool as a historical curiosity, but not ideal for optimizing expertise acquisition.